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Abstract. We propose a generalization of the formula that gives an integrable quantum 1D spin
Hamiltonian with nearest-neighbour interactions as a logarithmic derivative of a vertex model
transfer matrix in order to include in this scheme more realistic integrable models. We compute
exactly this generalized formula using the R matrix of the XXX model, obtaining the Majumdar–
Ghosh Hamiltonian plus a charge-like interaction term. We diagonalize this Hamiltonian using the
quantum inverse scattering method and present the Bethe ansatz equations of the model.

Since the pioneering work of Bethe in 1931 [1], low-dimensional integrable spin models have
been the subject of increasing interest. Nowadays, there is a long list of one-dimensional (1D)
integrable spin models solved with the Bethe ansatz or with other methods [2]. Nevertheless,
few solutions have been found in higher dimensions and in low-dimensional models involving
more complicated interactions such as nearest- and next-nearest-neighbour interactions.

In this Letter we propose a generalization of the well known connection [3] between
the transfer matrix of vertex lattice models and quantum 1D spin Hamiltonians with nearest-
neighbour interactions without spoiling integrability. The purpose of this extension is to
accommodate, within this picture, more realistic integrable quantum 1D spin Hamiltonians
presenting nearest-neighbour as well as next-nearest-neighbour interactions.

In our generalization we work with two transfer matrices: one of them is constructed
taking the trace of products of L operators with alternating values of the spectral parameter,
and the other is given by a shift of the previous one. Apart from a trivial constant, the spin
Hamiltonian is given by the difference of the logarithmic derivative of both transfer matrices.

We compute exactly this generalized formula using the R matrix of the XXX model,
obtaining a spin- 1

2 quantum 1D Hamiltonian with isotropic nearest- and next-nearest-
neighbour interactions (usually called the Majumdar–Ghosh Hamiltonian [4]) plus a charge-
like interaction term. Thus, for the R matrix under consideration, our approach provides a
model of great interest: a quantum linear chain with competing interactions [5].

Due to the special way this Hamiltonian is given through a transfer matrix, we show that
we can diagonalize it using the quantum inverse scattering model (QISM) [6], obtaining the
Bethe vectors, energy eigenvalues and the algebraic Bethe ansatz equations (BAE) for this
model, generalizing in a non-trivial way the respective well known expressions of the XXX
Heisenberg model.
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The results of this Letter indicate that, associated with each model in the large class of
integrable spin models obtained by means of a transfer matrix of vertex models, there is a
descendant integrable model with nearest- and next-nearest-neighbour interactions obtained
following the approach we are going to describe.

We start by presenting the main points of a generalization of the QISM that is suitable
for the discussion of that Hamiltonian with competing interactions we are going to study. The
main formula of the QISM is a variation of the Yang–Baxter relation [7], usually called the
RLL relation:

Ra1a2 (λ − µ)Ln,a1(λ)Ln,a2 (µ) = Ln,a2 (µ)Ln,a1(λ)Ra1a2 (λ − µ) (1)

where λ is a complex parameter called the spectral parameter and Ra1a2 (λ) is the well known
R matrix of the XXX model [6] that acts in the tensor product of two auxiliary spaces given by
C2 ⊗ C2 and satisfies the quantum Yang–Baxter relation [7]. Ln1,a1(λ) is an operator acting
in the tensor product of a local space C2 and an auxiliary C2:

Ln,a(λ) = λIn ⊗ Ia +
i

2

∑
α

σ α
n ⊗ σ α (2)

with I denoting the unit matrix in the respective spaces and �σ the Pauli matrices.
As noted in [8], the RLL relation can be generalized as

Ra1a2 (λ − µ)Ln,a1(λ
(n))Ln1,a2 (µ

(n)) = Ln1,a2 (µ
(n))Ln1,a1(λ

(n))Ra1,a2 (λ − µ) (3)

where λ(n) = λ + vn and µ(n) = µ + vn, with vn a set of complex numbers. This allow us to
define

Ta({λ}) = L1,a(λ(1)) . . . Ln,a(λ(n)) . . . LN,a(λ(N)) (4)

which can be written in matrix form as

Ta({λ}) =
(

A({λ}) B({λ})
C({λ}) D({λ})

)
. (5)

It is easy to see that [8]

Ra1a2 (λ − µ)Ta1({λ})Ta2 ({µ}) = Ta2 ({µ})Ta1({λ})Ra1a2 (λ − µ) (6)

which is the generalization of the usual RTT equations.
From the above RTT equations we get

[B({λ}), B({µ})] = 0

A({λ})B({µ}) = f (λ − µ)B({µ})A({λ}) + g(λ − µ)B({λ})A({µ})
D({λ})B({µ}) = h(λ − µ)B({µ})D({λ}) + k(λ − µ)B({λ})D({µ})

(7)

where

f (λ) = λ − i

λ
g(λ) = i

λ
h(λ) = λ + i

λ
k(λ) = i

λ
. (8)

Consider the reference state � = ∏1
n=N ⊗ wn with wn ≡ | ↑〉. On this state we have

Ln(λ(n))wn =
(

λ(n) + i/2 ∗
0 λ(n) − i/2

)
wn (9)

with ∗ denoting operator expressions which are not relevant for us. Thus we have

C({λ})� = 0 A({λ})� = αN ({λ})� D({λ})� = δN ({λ})� (10)

with αN ({λ}) ≡ ∏N
i=1 α(λ(i)), δN ({λ}) ≡ ∏N

i=1 δ(λ(i)), α(λ) = λ + i/2 and δ(λ) = λ − i/2.
From the above relations we can easily see that � is an eigenstate of F ({λ}) = A({λ})+D({λ}).
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Now, we define vectors of the form

φ({λ}) = B({λ}1) . . . B({λ}l)�. (11)

Using equations (7) we can show that

[A({λ}) + D({λ}) − A({λ̃}) − D({λ̃})] φ({λ}) = [!({λ}) − !({λ̃})] φ({λ}) (12)

where λ̃(n) = λ(n) + ψ with ψ complex and

!({λ}) = αN ({λ})
#∏

k=1

f (λ − λk) + δN ({λ})
#∏

k=1

h(λ − λk) (13)

if each λk satisfies

αN ({λ}k)

#∏
m 
=k

f (λk − λm) = δN ({λ}k)

#∏
m 
=k

h(λk − λm). (14)

Let us now consider the special T matrix given by

T ({λ}) = L1,a(λ(1)) . . . Ln,a(λ(n)) . . . LN,a(λ(N)) (15)

where

λ(odd) = λ λ(even) = λ + iα (16)

and

T ({λ̃}) = L1,a(λ̃(1)) . . . LN,a(λ̃(N)) (17)

for λ̃(n) = λ(n) + ψ with ψ = −i − iα. Defining the transfer matrix F

F ({λ}) = tra T ({λ}) (18)

we have computed exactly

H = c
d

dλ
{ln F ({λ}) − ln F ({λ̃})}|λ=i/2 + N(α − 1)(α + 2) (19)

for c = −i(α − 1)(α + 1), using both Maple and Mathematica software (it can be used in any
algebraic computation software), for four and six sites and we have obtained

H =
2M∑
n=1

�σn · �σn+1 − α2

2

2M∑
n=1

�σn · �σn+2 +
iα

2

2M∑
n=1

(−1)nεijkσ i
nσ

j

n+1σ k
n+2 + N

(7α2 + 4α − 8)

8

(20)

with σ i
n+N = σ i

n, εijk the totally antisymmetric Levi-Civita tensor and M = N/2.
In two cases the Hamiltonian in (20) can be computed exactly for arbitrary even N � 4:

for α � 1 and α infinitesimal. In these cases we obtain exactly the asymptotic values of the
Hamiltonian in (20) (see the appendix for the computation). As a consequence of the asymptotic
analysis, if there is any other term in (20) for 0 < α < ∞ and arbitrary even N � 4, this extra
term would contribute to the matrix element of H for α → 0 (or α → ∞) as hextra

(i,j) → αr(i,j)

for 1 < r(i,j) < 2. But, since by construction the matrix elements of T are polynomials
with integer powers in α, the matrix elements of H as computed from equations (15)–(19)
are, in general, fractions of polynomials with integer powers in α. Thus, as α goes to zero or
infinity these matrix elements of H behave as αn(i,j) , where n(i,j) are integers, implying that
the extra terms are zero. Then, the Hamiltonian obtained in equation (20) is the general result
for arbitrary even N � 4.

The above Hamiltonian is the periodic Majumdar–Ghosh Hamiltonian plus a SU(2)-
invariant charge-like interaction term. The Majumdar–Ghosh Hamiltonian is conjectured not
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to be integrable [9] and what comes out from our calculation is that the additional charge-like
interaction term we find in equation (20) is essential to render it integrable.

Let us call the third term of equation (20)

Q = α

2M∑
n=1

(−1)nεµνρσ µ
n σ ν

n+1σ
ρ

n+2

where Q is Hermitian for α = pure imaginary. For complex α (not pure imaginary) we must
make projections on the space of states of the system in order to obtain a model with a Hermitian
Hamiltonian. This projection will select from among the eigenstates of the Hamiltonian given
by the first two terms in equation (20) for complex α (not pure imaginary) those states belonging
to the sector of zero eigenvalue of Q.

The case where α = i is particularly interesting since the ground state of the first two
terms in equation (20) is known exactly and it has a dimerized form [4, 11]. If we introduce
the notation for the singlet pair as

[l, m] ≡ 1√
2

(| ↑〉l ⊗ | ↓〉m − | ↓〉l ⊗ | ↑〉m) (21)

and define V1(N) and V2(N) as

V1(N) ≡ [1, 2][3, 4][5, 6] . . . [N − 1, N ]

V2(N) ≡ [2, 3][4, 5][6, 7] . . . [N, 1]
(22)

we know that V1,2(N) are ground states of the first two terms of equation (20) for α = i. It is
possible to verify that there is no c1,2 given in

V (N) = c1V1(N) + c2V2(N) (23)

such that V (N) is an eigenstate of Q. Then, the ground state of the Majumdar–Ghosh model at
the Majumdar–Ghosh point (equation (20) with the first two terms for α = i) does not remain
the ground state of the Hamiltonian given in equation (20) for α = i.

As this Hamiltonian is derived from the transfer matrix F ({λ}) defined by equations (18)
and (19) it can be diagonalized as discussed previously with eigenvectors

φ({λ}) = B({λ}1) . . . B({λ}l)� (24)

where λk, k = 1, . . . , #, satisfy the algebraic Bethe ansatz equations

(λk + i/2)M

(λk − i/2)M

(λk + i/2 + iα)M

(λk − i/2 + iα)M
=

#∏
m 
=k

λk − λm + i

λk − λm − i
(25)

with energy eigenvalue

E = (α − 1)(α + 1)

l∑
β=1

{
1

λ2
β + 1

4

+
1

λ2
β + 2iα + ( 1

2 + α)( 1
2 − α)

}
. (26)

Of course, if we perform the limit α → 0 then equations (20), (25) and (26) become the
Hamiltonian, BAE and energy eigenvalue of the Heisenberg XXX quantum chain, respectively.

It is possible to prove that

[S3, B({λ})] = −B({λ}) [S+, B({λ})] = A({λ}) − D({λ}). (27)

Since for the reference state � we have

S+� = 0 S3� = N

2
� (28)
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using equations (27) and repeating the procedure that was used to derive the BAE [12] we can
show that if the BAE, equation (25), are satisfied we have

S+φ({λ}) = 0 (29)

which means that φ({λ}) are all highest weight states.
The connection between the transfer matrix of vertex lattice models and quantum 1D spin

Hamiltonians with nearest-neighbour interactions is well known. Several integrable quantum
1D spin models with nearest-neighbour interactions are within this framework. We believe that
the case analysed in this Letter (acquisition of the integrable model given in equation (20) having
nearest-neighbour as well as next-nearest-neighbour interactions through a vertex transfer
matrix and the first steps in the proof of complete integrability of the model) is not a singular
case. We conjecture that, associated with each model in the large class of integrable spin
models with nearest-neighbour interactions obtained by means of a transfer matrix of vertex
models, there is a descendant integrable spin Hamiltonian with nearest-neighbour as well as
next-nearest-neighbour interactions obtained using the approach described in this Letter.

Finally, it would be interesting to investigate if equations (18) and (19) could be further
generalized in order to accommodate integrable descendants with interactions up to nth-
neighbour interactions.

The author thanks L Rodrigues for discussions in the early stages of this work, S Sciuto
and a member of the Editorial Board for useful critical comments on the manuscript and
PRONEX/FINEP/MCT for partial support.

Appendix

In this appendix we are going to prove that asymptotic limits of the Hamiltonian in (20) are
obtained using equations (15)–(19) in two asymptotic cases. Details are given just for the
λ part of the transfer matrix in equation (19), since the λ̃ part is obtained in a similar way.
Moreover, for simplicity we will focus our analysis on the terms proportional to α.

It is convenient to rewrite the L matrices for odd and even sites as

Ln,a(λ) = (λ − i/2)In,a + iPn,a (30)

and

L̂n,a(λ) = (λ − i/2)In,a + iPn,a + iαIn,a (31)

where we denote by Ln,a1(λ) the L matrix for odd sites, L̂n,a1(λ) the L matrix for even sites
and Pn,a is the twist matrix for quantum and auxiliary spaces indicated by the sub-indices n

and a, respectively. Moreover, in components these matrices are written as

Ln,a(λ) −→ Lᾱn

αn
(γnγn+1)(λ) (32)

where (αn, ᾱn) are the quantum indices and (γnγn+1) the auxiliary indices. Using these
notations we write the transfer matrix as

F
{ᾱ}
{α} ({λ}) =

∑
{γ }

Lᾱ1
α1

(γ1γ2)(λ)L̂ᾱ2
α2

(γ2γ3)(λ) . . . LᾱN−1
αN−1

(γN−1γN )(λ)LᾱN

αN
(γN γ1)(λ). (33)

In two cases the Hamiltonian in (20) can be computed exactly for arbitrary even N � 4.
In the first case we take α � 1 in equations (15)–(19) and, since in equation (31) the dominant
term is unity in the auxiliary and quantum spaces, we trivially obtain, apart from a trivial
constant that can be easily computed, the isotropic interaction spanning over odd sites. It can



L444 Letter to the Editor

be easily verified that the λ̃ part of the transfer matrix in equation (19) gives the isotropic
interaction spanning over even sites.

The second case, obtained by considering α infinitesimal in equations (15)–(19), is less
trivial. Consider the transfer matrix when λ = i/2 for α infinitesimal:

F ({i/2}) = A + α

N/2−1∑
i=1

B(i) (34)

where

A
{ᾱ}
{α} = iN

∑
{γ }

P ᾱ1
α1

(γ1γ2) . . . P ᾱN

αN
(γN γ1) (35)

and

B
{ᾱ}
{α} (i) = iN

∑
{γ }

P ᾱ1
α1

(γ1γ2) . . . P ᾱ2i−1
α2i−1

(γ2i−1γ2i )I
ᾱ2i

α2i
(γ2iγ2i+1)P ᾱ2i+1

α2i+1
(γ2i+1γ2i+2) . . . P ᾱN

αN
(γN γ1).

(36)

It is easy to see that the inverse transfer matrix for λ = i/2 in the α infinitesimal case is

F −1({i/2}) = A − α

N/2∑
i=1

B(i). (37)

Moreover

d

dλ
F ({λ})|λ=i/2 =

N∑
n=1

C(n) + α

( N/2−1∑
i=0

D(i) +
N/2∑
i=1

E(i)

)
(38)

where,

C
{ᾱ}
{α}(n) = iN−1

∑
{γ }

P ᾱ1
α1

(γ1γ2) . . . P ᾱn−1
αn−1

(γn−1γn)L̇ᾱn

αn
(γnγn+1)P ᾱn+1

αn+1
(γn+1γn+2) . . . P ᾱN

αN
(γN γ1)

(39)

D
{ᾱ}
{α}(i) = iN−1

N/2∑
n=1

∑
{γ }

P ᾱ1
α1

(γ1γ2) . . . P ᾱ2i

α2i
(γ2iγ2i+1)L̇ᾱ2i+1

α2i+1
(γ2i+1γ2i+2)P ᾱ2i+2

α2i+2
(γ2i+2γ2i+3)

. . . P ᾱ2n−1
α2n−1

(γ2n−1γ2n)I ᾱ2n

α2n
(γ2nγ2n+1)P ᾱ2n+1

α2n+1
(γ2n+1γ2n+2) . . . P ᾱN

αN
(γN γ1) (40)

and

E
{ᾱ}
{α}(i) = iN−1

N/2∑
n=1,n 
=i

∑
{γ }

P ᾱ1
α1

(γ1γ2) . . . P ᾱ2i−1
α2i−1

(γ2i−1γ2i )L̇
ᾱ2i

α2i
(γ2iγ2i+1)P ᾱ2i+1

α2i+1
(γ2i+1γ2i+2)

. . . P ᾱ2n−1
α2n−1

(γ2n−1γ2n)I ᾱ2n

α2n
(γ2nγ2n+1)P ᾱ2n+1

α2n+1
(γ2n+1γ2n+2) . . . P ᾱN

αN
(γN γ1) (41)

with

L̇ᾱm

αm
(γmγm+1) = d

dλ
Lᾱm

αm
(γmγm+1)(λ)|λ=i/2. (42)

Now, we are going to compute the product F −1(λ) d
dλ

F ({λ})|λ=i/2 from equations (37)
and (38). The product of the first terms of the right-hand side of equations (37) and (38) is a
well known calculation and gives the first term of the right-hand side of equation (20). It can be
verified that the first term on the right-hand side of equation (37) times the second term on the
right-hand side of equation (38) plus the second term on the right-hand side of equation (37)
times the terms with n odd in the first term on the right-hand side of equation (38) gives

i2N−1
N/2−1∑

i=0

δᾱ1
α1

. . . δᾱ2i

α2i
(δᾱ2i+1

α2i+2
L̇ᾱ2i+2

α2i+3
(α2i+1ᾱ2i+3) − δᾱ2i+2

α2i+1
L̇ᾱ2i+1

α2i+3
(α2i+2ᾱ2i+3))δᾱ2i+4

α2i+4
. . . δᾱN

αN
. (43)
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Moreover, the first term on the right-hand side of equation (37) times the third term on the
right-hand side of equation (38) plus the second term on the right-hand side of equation (37)
times the n-even terms in the first term on the right-hand side of equation (38) gives

−i2N−1
N/2∑
i=1

δᾱ1
α1

. . . δᾱ2i−2
α2i−2

L̇ᾱ2i

α2i
(α2i−1ᾱ2i−1)δᾱ2i+1

α2i+1
. . . δᾱN

αN
. (44)

It is easy to see that

δᾱ2i+1
α2i+2

L̇ᾱ2i+2
α2i+3

(α2i+1ᾱ2i+3) − δᾱ2i+2
α2i+1

L̇ᾱ2i+1
α2i+3

(α2i+2ᾱ2i+3) = − i

2
εlmnσ l

α2i+1ᾱ2i+1
σ m

α2i+2ᾱ2i+2
σ n

α2i+3ᾱ2i+3
(45)

and

L̇ᾱ2i

α2i
(α2i−1ᾱ2i−1) = δᾱ2i−1

α2i−1
δᾱ2i

α2i
. (46)

Using equations (39)–(42) in the λ part of the transfer matrix in equation (19) we obtain the odd
sites of the third term and half of the term proportional to α in the fourth term of equation (20).
The even sites are obtained by a similar computation using the λ̃ part of the transfer matrix in
equation (19).
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